
Measuring and Mitigating the Risk 
of IP Reuse on Public Clouds

Eric Pauley, Ryan Sheatsley, Blaine Hoak,
Quinn Burke, Yohan Beugin, Patrick McDaniel

Pennsylvania State University
Contact: epauley@psu.edu

Measuring and Mitigating the Risk of IP Reuse on Public Clouds



Public Clouds: Disruption at Scale

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Public clouds leverage resource sharing and reuse to improve performance.



Vulnerabilities due to Resource Sharing

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Row Hammer (Kim et al. 2014)
Meltdown (Lipp et al. 2018)

Storage Policies (Continella et al. 2018)

How does the resource lifecycle of public clouds affect security?



Issue: Resource Reuse

1. Tenants create configuration that refers to 
cloud resources (e.g., IP addresses):
• Causes clients to use resources
• Establishes a trust relationship

2. Cloud resources reused by other tenants
• Configuration is now latent

3. Previous tenant’s clients send data
• Adversary listens (cloud squatting)

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

&ORXG�
,QIUDVWUXFWXUH

������������

&OLHQWV

(QG�8VHUV� &ORXG�6HUYLFHV�



Measuring and Mitigating the Risk of IP Reuse on Public Clouds

AWS Cloud

Availability Zone 1 Availability Zone n

Spot Fleet

Instances

…

&OLHQWV

(QG�8VHUV� &ORXG�6HUYLFHV�

EC2 instance

• TCP Handler
• Request Analyzer
• Traffic Recorder

Amazon S3

Experiment (March 8 – May 15, 2021)
• 3M servers allocated on AWS us-east1
• ~500M network sessions
• ~½ TB of raw network traffic data
• 1.5M unique IP addresses 

• 56% of total available in pool

Analysis Pipeline

Cloud Internet Telescope

☆ ☆

Nameserver

[1]

[2]

[3]

Re
so

ur
ce

 R
eu

se

IP address

Hosted Platform

Latent Configuration

DNS

Cloud Config

Third-Party

[1] Borgolte et al. 2018
[2] Alowaisheq et al. 2020
[3] Liu et al. 2016



Cloud Squatting: Vulnerability at Scale

Cloud Services
• >5M messages
• 4 cloud services

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Third-Party Services
• >3M messages
• Numerous Services

DNS
• 5400 Websites
• 23 top-1000

Example Sensitive Data Received
Financial Personal Location Remote Code 

Execution Passwords Images



Measuring IP Reuse: Bottom-Up

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Provision Servers

Collect Traffic

Configuration 
Types

Filter Traffic

Identify 
Vulnerabilities



Characterizing Cloud IP Reuse

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

TABLE II: IP allocation statistics, including per-region esti-
mates of the total available IPs and percentage of estimated
IPs that were measured in our study (Capture Rate). In
total we estimate that 56% of available IP addresses in the
us-east-1 region were measured.

Zone Servers Unique IPs Estimated IPs Capture Rate

us-east-1a 581 k 383 k 789 k 49%
us-east-1b 607 k 389 k 762 k 51%
us-east-1c 630 k 236 k 313 k 76%
us-east-1d 573 k 360 k 700 k 51%
us-east-1f 647 k 171 k 198 k 87%

Total 3039 k 1540 k 2762 k 56%

C. Ethics and Adversarial Implications

Throughout our study we took actions to ensure that ef-
fects of our measurement would be minimized. As in prior
works [4], [5], we capped our IP addresses allocation to an
acceptable rate (320 addresses every 10 minutes). Our data
collection was covered under an exemption from our institu-
tional review board (IRB). While the scope of data collected
in our study was similar to other network telescopes [20], [46],
[21], we also took additional steps (outlined in Appendix B)
to ensure that data was protected throughout the study. Dis-
closure of all discovered vulnerability was performed through
Amazon (Appendix A), including extended scanning by AWS
to provide expanded disclosure.

Unlike previous datasets that collect only transport-layer
traffic (e.g., UDP packets and TCP SYN packets) [48], our
approach yields raw packet captures with data from servers
that are legitimately routable, but otherwise have no content.
Because the approach does not rely on privileged access to the
cloud, it also presents a compelling technique for an adversary:
rather than passively collect traffic for study, an adversary
could deploy honeypots designed to target commonly-used
protocols. These honeypots could record personal information
for exploitation, provide fake authentication prompts to extract
credentials, or host drive-by downloads of malware. The
low cost with which our measurement study was performed
(2089.76USD over 101 days) suggests that an adversary could
carry out such an attack at minimal expense. This clear risk
to cloud infrastructure motivated our extensive disclosure and
remediation process (see Appendix A).

V. CHARACTERIZING CLOUD IP USE

We first use our collected data to analyze the AWS
us-east-1 IP pool. An adversary wishing to exploit latent
configuration would aim to measure as many IPs as possible,
and to ensure that those IPs have been used by other tenants
recently. This motivates two analysis questions: (A) how many
IPs are available for allocation by cloud tenants? (B) how
quickly are IPs available for reuse? These questions will also
inform our evaluation of countermeasures (Section VII).

A. IP Address Availability

To estimate the number of available IPs, we model the IP
address pool in each AWS availability zone as a population

Fig. 3: Measuring time between IP reuse on AWS, over the
entire study and reuse seen within 6 hours. IPs were generally
not reused within 30 minutes after release.

survey. Population surveys are a statistical method generally
used to measure animal populations, but the same principles
can be applied in this case to estimate size and activity of
the IP address pool. We begin by assuming that IP allocations
are pseudo-randomly drawn from the pool of available IPs
(as has been subsequently confirmed in conversations with
Amazon). We model the pool as an open population, since
other tenants also allocate and return IPs during the course
of the study. All modeling was performed using an open
population estimation technique developed by Sandland and
Cormack [49], implemented in Rcapture [50]. We see that
larger availability zones yield largely unseen IPs throughout
the experiment whereas smaller ones are quickly covered. An
adversary seeking to maximize IP coverage might target zones
with fewer IPs, while one searching for a specific tenant’s IPs
would emphasize high capture rate.

Results of our population estimation are shown in Table II.
We estimate the number of IPs in the pool at any point during
the study, as well as the capture rate, which is the percentage
of estimated IPs that we measured. This can be interpreted as
a probability that any IP released into the pool was measured
by us during the study. We conclude that the current IP
pool implementation on AWS is favorable for achieving high
coverage of the IP space. Creating servers on AWS yields a
high number of IPs, each of which could have potential latent
configuration. Further, our capture ratio across each zone was
as high as 87%, meaning that an IP released by a tenant in
the pool had an 87% chance of being measured by our study.
These metrics show that an adversary can continually measure
the IP space and discover new, potentially exploitable systems,
and that even a single adversary performing such an attack
poses a high risk to cloud tenants in even the largest zones.

B. Age of IPs at Reuse

We additionally evaluate the age of IP addresses when they
are reused (i.e., how long it takes for an IP address to be
reallocated after a tenant releases it). Because we achieve such
high coverage of the us-east-1 IP space, many of the IPs
seen by our apparatus are seen twice or more (in one instance
in us-east-1f, we received the same IP address 13 times).
By recording the interval between release and reacquisition
of these IP addresses, we can characterize the IP address
allocation to understand what policies are being applied.

6

Pseudorandom IP allocation allows adversaries to 
easily explore the IP space with high coverage.



Measuring IP Reuse: Bottom-Up

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Provision Servers

Collect Traffic

Configuration 
Types

Filter Traffic

Identify 
Vulnerabilities



Cloud Services
• Managed by cloud provider
• Configured to connect to IP addresses
• E.g., SNS, Route53

Third-Party Services
• Client software referencing reused IPs
• E.g., Databases, APIs

Domain Names

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Configuration

Types of Latent Configuration



Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Measuring Cloud Services

AWS Cloud

HTTP notification

Amazon Simple 
Notification Service

Instance
Request

203.0.113.15198.51.100.121

2

1. AWS-verified IP Address
2. Cloud service identified in HTTP headers

Amazon EC2



Cloud Services are Vulnerable

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

TABLE III: Number of unique IPs receiving traffic from each
cloud service, number of TCP sessions in total and with DNS
info, and estimated unique tenants.

Service SNS Route53 Cloudfront API Gateway

IPs 24.9 k 2.8 k 65 3
Sessions 1.6M 3.6M 1.7 k 10

Sessions w/ DNS 25 567 k 767 2
Unique Tenants 78 3.1 k 64 3

Figure 3 shows the distribution of these intervals. At a macro
level (left side), we see that reuse time is consistent with
a Poisson process, implying that IP addresses are randomly
chosen from the pool without respect to when the IP was
most recently used. When looking at reuse seen within 6 hours
(right side), we find that IP addresses are not reused within
30 minutes of release, even by the same tenant (outliers are
caused by our use of EC2 spot instances and do not indicate
reuse before 30min). This demonstrates AWS is employing a
cooldown policy on their IP address pool, though as we see
in our analysis of exploitable configuration (Section VI) such
an aging policy is likely intended for other purposes and does
not prevent exploitable misconfiguration due to IP reuse.

VI. MEASURING EXPLOITABILITY

Referring back to Table I, we consider latent configuration
vulnerabilities in three stages. We first explore vulnerabilities
associated with cloud services. Next, we show that vulner-
abilities exist beyond managed services and span a variety
of protocols, applications, and verticals. Finally, we leverage
information obtained from public DNS to attribute found
vulnerabilities to specific organizations, finding that latent
configuration is ubiquitous across organizations of all sizes.

A. Exploitation Through Cloud Services
We first investigate vulnerabilities caused by latent config-

uration in managed cloud services. To do this, we filtered all
received traffic to sessions exclusively coming from the AWS
IP space that is reserved for managed services [51]. Requests
were then associated with each individual cloud service based
on HTTP user agent. Note that, because the studied IP space
is reserved for managed services, we can validate that filtered
traffic is legitimate service traffic and not an adversary posing
as a managed service.

In total we discovered traffic that was traceable to four dif-
ferent cloud services: (1) Simple Notification Service (SNS),
(2) Route53, (3) Cloudfront, and (4) API Gateway. While these
services varied in prevalence, each service either directly sent
sensitive data or had a clear path by which an adversary could
extract sensitive data. Coarse statistics on traffic received from
each service are presented in Table III.
SNS. AWS Simple Notification Service (SNS) [6] allows
tenants to publish and subscribe to messages (similar to
MQTT [36]) and is broadly used for internal communication
between cloud services. It is designed to be fault tolerant:
it will continue sending messages to subscribed IP addresses
even if the address is not available for an extended period

of time, enqueueing failed messages as necessary (e.g., due
to server decommissioning). Therefore, an adversary who re-
ceives the IP address may receive new messages and messages
enqueued from before they acquired the address.

We received messages from 78 SNS topics on 24.9 k
unique cloud IP addresses, with 1.6M total messages received.
Because SNS traffic is intended for internal communication
between services, some of the communications received from
these channels were highly sensitive. In one case, a SNS
endpoint was used by a financial services provider to trans-
mit information pertaining to client transactions. In another,
a social services organization was transmitting the names,
addresses, contact information, and location history of clients
via SNS. In both of these cases, latent configuration referenced
multiple previously-controlled IP addresses for a single topic,
amplifying the ability for an adversary to receive the traffic.
Route53. Route53 [7] is Amazon’s authoritative DNS service,
and it allows tenants to check the health of services (Route53
Health Checks) before routing traffic to them. The health
checks also provide fault tolerance: an unreachable service
will not be included in DNS responses, preventing traffic
from reaching that service. However, if a health check targets
an IP address now-owned by an adversary, they can begin
responding successfully to the health check and subsequently
receive traffic intended for the previous tenant.

Although this traffic did not directly contain sensitive data,
it is indicative of a cloud squatting vulnerability. Most health
checks were not associated with a domain name, however, in
some cases health checks were associated with domain names
that were also seen directly receiving end-user traffic. For
instance, one entertainment company had vulnerabilities under
multiple unique domain names and under Route53 health
checks. In total 2.8 k unique IP addresses received traffic
from Route53 health checks, with an estimated 3.1 k unique
properties (this implies that some IP addresses were associated
with multiple properties, potentially by the same tenant).
Cloudfront. Cloudfront [8] is a content delivery network
(CDN) that routes requests to cloud servers. When a tenant
fails to remove an IP address from Cloudfront configuration
when releasing the IP address, a cloud squatting vulnerability
can occur. In total we found 65 IP addresses received 1.7 k
requests from Cloudfront. Because Cloudfront distributions
are often placed in front of static content we predictably did
not observe sensitive data sent directly by these connections.
However, the use of CDNs in serving content such as scripts
makes them an enticing target for adversaries. In one case, a
Cloudfront distribution forwarded requests for a JavaScript file
to be run alongside a major website. An adversary responding
to this request could receive remote code execution capabilities
within the context of a trusted site.
API Gateway. API Gateway [9] also acts as a frontend to
route traffic to cloud services. We found that three unique
IP addresses received traffic attributable to API Gateway. In
one case, this traffic directly contained API authentication
information intended for a service hosted on AWS. While the

Leaked data:
Financial Personal Location Remote Code 

Execution



Filtering Third-Party Services

• Main idea: filter out likely bot/scanner 
traffic to analyze remaining share
• Method: series of filters at various 

levels of protocol stack:
1. Network filtering (Blocklists)
2. Transport filtering (IP/Port scanning)
3. Session filtering
4. Application Filtering

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

limited set of connections from this service makes it difficult
to draw conclusions on trends, it is likely that cloud squatting
presents a credible concern for customers using API Gateway
with raw IP addresses.

Independence from DNS. We confirmed our hypothesis that
latent configuration might exist beyond just DNS: across the
4 cloud services measured, traffic existed on each that did not
contain DNS information. Because this traffic is sent from a
managed cloud service with standardized behavior, the lack
of DNS information in a request implies that DNS was not
used to configure the connection from the cloud service (i.e.,
the configuration directly referred to the IP address). As a
result, we conclude that the connections are caused by latent
configuration within the cloud service itself. In these cases,
as cloud provider configuration is not publicly visible, our
telescope-based approach identifies vulnerabilities not seen in
prior works.

Generality across providers. Our measurement study is
focused on the specific services provided by AWS. As other
cloud providers offer similar services, we hypothesize similar
effects on those providers as well. For instance, Microsoft
Azure offers Azure Event Grid [52], which is similar to SNS,
and Google Cloud Platform offers Cloud Pub/Sub [53]. In the
case of Azure, endpoints are validated at provisioning time,
but configuration is not validated on an ongoing basis. Cloud
Pub/Sub relies on TLS for endpoint authentication, so findings
regarding TLS apply here as well.

Our analysis demonstrates a trend of exploitable latent
configuration across managed cloud services. Whereas an
adversary wishing to exploit connections through a CDN or
health check must exert manual effort to perform a phishing
campaign, messages received from a service such as SNS
directly convey sensitive information, and an adversary could
obtain this traffic in a fully automated fashion, analyzing the
data after the fact to determine what information is of value.
Further, these cloud services collectively show a surprising
downside of fault tolerance: when services fail silently and re-
cover from errors automatically, they can inadvertently become
targets for abuse by adversaries when used in a shared compute
environment such as a public cloud. While our study identified
many vulnerable properties, the approach only allows us to
observe a (representative) fraction of total cloud traffic. In
response to observed vulnerabilities, Amazon is using control-
plane information to detect potential vulnerabilities across all
regions and tenants (Section VII-C).

B. Exploitation through Third-Party Services

We filter collected traffic to examine the prevalence of
latent configuration in third-party service traffic (i.e., traffic
not sent by managed cloud services). Our filter (see sidebar
and Appendix E) attempts to identify what is legitimate (i.e.,
attempting to interact with a previous tenant of the IP address)
and exploitable (i.e., allows for unintended information leak-
age from the client).

TABLE IV: Effect of the traffic filtering apparatus on remain-
ing traffic to be analyzed. Our goal in this section is to reduce
the dataset to be manually analyzed for exploitable traffic.

Step IPs TCP Sessions Size

Initial 3.13M 596M 410GB
Network 3.03M 280M 148GB
Transport 1.70M 10.2M 11GB
Session 1.14M 4.89M 9.3GB

Application 340 k 2.95M 6.3GB

After all filtering steps were applied, the remaining traf-
fic contained 340 k source IP addresses across 2.95M TCP
sessions. The first session from each source IP address was
analyzed manually to further reduce dataset size. While quan-
tifying the prevalence of other exploitable traffic is intractable,
we did find that exploitable traffic exists across a variety of
protocols and applications.
Databases. We received traffic intended for databases hosted
by customers on AWS. Connections were specifically identi-
fied across MySQL [12], Postgres [10], and ElasticSearch [11],
though other database protocols likely exist within the data
but were not manually identified. For example, one IP address
received repeated connection attempts to a Postgres database
apparently intended to hold payment information, including
plausible credentials. An adversary could employ a database
honeypot to harvest credentials for use in attacking other
services, or even directly receive sensitive user data contained
in database queries, though our experimental apparatus pur-
posefully does not elicit such traffic.
Caches. We identified two types of traffic intended for
Redis [13]: (1) client traffic sending queries to an instance and
(2) communication between Redis cache servers. While client
traffic may be attributable to scanners, inter-server traffic was
plausibly legitimate. This traffic implies that the IP address
was formerly part of a cluster of Redis cache servers serving
the same cache, and that a server listening at this address
could receive intra-cluster communication traffic, which would
contain data about the information stored in the cache. Again,
the passive nature of our data collection approach did not allow
sensitive information to be received in this case.
Financial Traffic. We identified an instance of traffic sent
using the Financial Information eXchange (FIX) protocol [14].
This protocol is used for sending metadata and commands re-
lated to securities trading. Manual analysis definitively traced
this FIX traffic to a financial services startup: the organization
likely previously hosted a FIX service at the IP address, but
failed to remove all latent configuration when the service was
decommissioned. The traffic contained credentials and further
interaction would likely result in receiving information on
transactions. We separately sent disclosures about this incident
in addition to those discussed in Appendix A.
Logging and Metrics. We found many instances of mobile,
web, and other applications sending logging, crash report,
and metrics traffic to controlled IP addresses. These log
requests contained tracebacks of application errors from mo-



Exploitable third-party services

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Databases

Caches

Financial Traffic

Logging

Webhooks

Custom APIs



Vulnerable Domain Names

From banner info: Over 5,400 domains found vulnerable
• 23 in top-1000
• Many domains had several vulnerable subdomains

Wide variety of associated organizations:
Industry
Academic
Government

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

TABLE V: Observed exploitable domains in the top 1,000 by site ranking and by number of unique exploitable server instances.

Top Domains by Unique Hosts Top Domains by Site Ranking
Site rank Unique hosts Subdomain Depth Domain Site rank Unique hosts Subdomain Depth Domain

450 107 2 redhat.com 31 2 4 amazonaws.com
8543 72 2 splunk.com 68 6 2 akadns.net
1593 65 2 service-now.com 76 2 2 cnn.com

588 482 57 2 filemaker-cloud.com 129 1 2 wix.com
76 965 47 2 boxcast.com 146 2 2 harvard.edu
11 868 34 3 appdomain.cloud 164 33 2 go.com

164 33 2 go.com 177 1 1 usatoday.com
21 057 32 1 duckdns.org 284 1 1 intuit.com
7691 25 1 hostedrmm.com 298 1 2 cornell.edu
7671 22 2 yummly.com 300 2 1 intel.com

14 349 22 1 glance.net 302 2 1 slack.com
225 042 17 1 bitnamiapp.com 434 1 1 vice.com
291 213 16 1 qmetry.com 450 107 2 redhat.com
54 293 15 1 wostreaming.net 470 4 1 trafficmanager.net
2018 14 1 ring.com 495 1 2 upenn.edu

65 484 14 1 otgs.work 497 1 2 elsevier.com
161 178 12 2 everlaw.com 535 1 1 ieee.org
226 628 12 2 reltio.com 578 1 3 jhu.edu
11 565 11 3 acquia.com 588 1 1 nvidia.com
16 428 10 2 psdops.com 618 1 3 lenovo.com

692 115 10 2 adikteev.io 767 3 3 ea.com
13 518 9 1 gannettdigital.com 782 2 1 hhs.gov
80 657 9 1 neulion.com 957 1 1 justice.gov

that many of the discovered vulnerabilities likely relate to
manually-created domains, rather than automation.

D. Disclosure and Root Causes

While the majority of vulnerability disclosure was coordi-
nated through AWS, we reached out directly to a subset of af-
fected organizations seeking informal feedback. Because cloud
service disclosures were performed through Amazon, we did
not have visibility into specific affected tenants, and therefore
targets for direct contact were selected based on DNS results.
We contacted 6 academic institutions, 1 government agency, 1
non-profit, and 9 industrial enterprises (including 6 high-tech,
2 financial, and 1 travel company), with organizations selected
based on effect size, breadth, and expectation of engagement
with academic research. For each of these 17 organizations, we
reached out via initial email using security contact information
as available, broadly overviewing our findings and scheduling
time to hold meetings with security representatives. During
these scheduled meetings, we initially presented broad study
results, followed by specifics of vulnerabilities found in the
organization. We also outlined available data from the study
that could be shared for deeper root cause analysis.

While each conference concluded with a free-form discus-
sion of results, we primarily asked organizations to provide
answers to a set of pre-scripted questions (Appendix D)
after the meeting. These questions sought to understand the
technical and organizational factors that led to the discovered
vulnerabilities. Such qualitative results were a byproduct of
our disclosure process, yet provide initial results that might
motivate a more formal user study of latent configuration.

Many root causes discussed map readily to misconfiguration
types discussed in prior work. Within the taxonomy introduced
by Dietrich et. al [60], results of the discussions generally

fell under the Integration and Deployment, No hardening, and
Scripting type codes, with an additional Oversight type that
had not been previously considered.

Integration & Deployment. The first source of latent con-
figurations asserted by organizations was the lack of good
hygiene in deploying services to the cloud. Many of these
problems were the result of lift-and-shift deployments: moving
an internal service such as email or data processing from an
internal server to the cloud with minimal reconfiguration or
redesign. If the deployed service is not adapted to properly
remove configurations upon decommissioning an instance,
there is the potential for latent configuration vulnerabilities.
Several of the respondents also stated that the problem was
made worse because the failure is often silent. In this case,
the latent configuration can exist for months or years without
any indication to the affected organizations.

No hardening. The second source of latent configurations
was attributed to simply not following best practices and es-
tablished procedures (e.g., using comprehensive configuration
management tools). In one case, we had an organization state
that the several hosts that were identified in the study were
all the result of one training organization that did not properly
clean up trainee’s work. Other cases were similar. It is notable
that the organizations frequently expressed that there was a
need to better educate its members on best practices, and to
revisit recommendations to emphasize the decommissioning
phase of the service deployment life cycle.

Scripting. In some cases, organizations expressed that la-
tent configurations were created as the result of automation.
Rather than configuration management tools (e.g. CloudFor-
mation [61] or Terraform [62]), these tenants had ad hoc
scripts that automated creation of resources. Inevitably, the

TABLE V: Observed exploitable domains in the top 1,000 by site ranking and by number of unique exploitable server instances.

Top Domains by Unique Hosts Top Domains by Site Ranking
Site rank Unique hosts Subdomain Depth Domain Site rank Unique hosts Subdomain Depth Domain

450 107 2 redhat.com 31 2 4 amazonaws.com
8543 72 2 splunk.com 68 6 2 akadns.net
1593 65 2 service-now.com 76 2 2 cnn.com

588 482 57 2 filemaker-cloud.com 129 1 2 wix.com
76 965 47 2 boxcast.com 146 2 2 harvard.edu
11 868 34 3 appdomain.cloud 164 33 2 go.com

164 33 2 go.com 177 1 1 usatoday.com
21 057 32 1 duckdns.org 284 1 1 intuit.com
7691 25 1 hostedrmm.com 298 1 2 cornell.edu
7671 22 2 yummly.com 300 2 1 intel.com

14 349 22 1 glance.net 302 2 1 slack.com
225 042 17 1 bitnamiapp.com 434 1 1 vice.com
291 213 16 1 qmetry.com 450 107 2 redhat.com
54 293 15 1 wostreaming.net 470 4 1 trafficmanager.net
2018 14 1 ring.com 495 1 2 upenn.edu

65 484 14 1 otgs.work 497 1 2 elsevier.com
161 178 12 2 everlaw.com 535 1 1 ieee.org
226 628 12 2 reltio.com 578 1 3 jhu.edu
11 565 11 3 acquia.com 588 1 1 nvidia.com
16 428 10 2 psdops.com 618 1 3 lenovo.com

692 115 10 2 adikteev.io 767 3 3 ea.com
13 518 9 1 gannettdigital.com 782 2 1 hhs.gov
80 657 9 1 neulion.com 957 1 1 justice.gov

that many of the discovered vulnerabilities likely relate to
manually-created domains, rather than automation.

D. Disclosure and Root Causes

While the majority of vulnerability disclosure was coordi-
nated through AWS, we reached out directly to a subset of af-
fected organizations seeking informal feedback. Because cloud
service disclosures were performed through Amazon, we did
not have visibility into specific affected tenants, and therefore
targets for direct contact were selected based on DNS results.
We contacted 6 academic institutions, 1 government agency, 1
non-profit, and 9 industrial enterprises (including 6 high-tech,
2 financial, and 1 travel company), with organizations selected
based on effect size, breadth, and expectation of engagement
with academic research. For each of these 17 organizations, we
reached out via initial email using security contact information
as available, broadly overviewing our findings and scheduling
time to hold meetings with security representatives. During
these scheduled meetings, we initially presented broad study
results, followed by specifics of vulnerabilities found in the
organization. We also outlined available data from the study
that could be shared for deeper root cause analysis.

While each conference concluded with a free-form discus-
sion of results, we primarily asked organizations to provide
answers to a set of pre-scripted questions (Appendix D)
after the meeting. These questions sought to understand the
technical and organizational factors that led to the discovered
vulnerabilities. Such qualitative results were a byproduct of
our disclosure process, yet provide initial results that might
motivate a more formal user study of latent configuration.

Many root causes discussed map readily to misconfiguration
types discussed in prior work. Within the taxonomy introduced
by Dietrich et. al [60], results of the discussions generally

fell under the Integration and Deployment, No hardening, and
Scripting type codes, with an additional Oversight type that
had not been previously considered.

Integration & Deployment. The first source of latent con-
figurations asserted by organizations was the lack of good
hygiene in deploying services to the cloud. Many of these
problems were the result of lift-and-shift deployments: moving
an internal service such as email or data processing from an
internal server to the cloud with minimal reconfiguration or
redesign. If the deployed service is not adapted to properly
remove configurations upon decommissioning an instance,
there is the potential for latent configuration vulnerabilities.
Several of the respondents also stated that the problem was
made worse because the failure is often silent. In this case,
the latent configuration can exist for months or years without
any indication to the affected organizations.

No hardening. The second source of latent configurations
was attributed to simply not following best practices and es-
tablished procedures (e.g., using comprehensive configuration
management tools). In one case, we had an organization state
that the several hosts that were identified in the study were
all the result of one training organization that did not properly
clean up trainee’s work. Other cases were similar. It is notable
that the organizations frequently expressed that there was a
need to better educate its members on best practices, and to
revisit recommendations to emphasize the decommissioning
phase of the service deployment life cycle.

Scripting. In some cases, organizations expressed that la-
tent configurations were created as the result of automation.
Rather than configuration management tools (e.g. CloudFor-
mation [61] or Terraform [62]), these tenants had ad hoc
scripts that automated creation of resources. Inevitably, the



Disclosures and Root Causes

Integration: lift-and-shift
• Transfers assumptions from private data center
• No consideration for service decommissioning

Failure to manage configuration
• No centralized view of cloud configuration
• Failure to follow best practices

Insufficient/broken automation
• No automated DevOps (e.g., CloudFormation)
• Bespoke deployments without decommissioning

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Direct tenant disclosures and surveys reveal root causes



Defenses and Mitigations

Resource (IP) reuse
Reserved IP ranges

Private networking

IPv6

IP allocation policy (e.g., IP Tagging)

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

domains used in configuration to determine if they reference
a tenant’s previously-controlled IP address.

Dangling DNS records are a clear place to start. A records
to raw AWS IPs or CNAME records that resolve to raw IPs
(e.g., via IPBNs) can lead to a vulnerability when the instance
is decommissioned but DNS records are not removed. When
DNS resolution and IP allocation are both controlled by the
cloud provider, remediation is possible. A records configured
through the provider’s DNS can be cross-checked against
IP allocation without interacting with any tenant resources.
In addition, the cloud provider might be able to remove a
DNS record automatically. More broadly, cloud providers can
play a key role in preventing latent DNS configuration by
discouraging the use of raw IP/IPBN references.

The ability to cross-reference control-plane information also
opens the possibility for cloud providers to interactively notify
users of latent configuration during decommissioning. When a
user decommissions a server, services within the same account
could be checked for references to the IP in real-time, with
users given the option to directly remove latent configuration
along with the cloud server. For example, such a check would
prevent the leakage of data through SNS traffic when servers
are improperly decommissioned. While such an approach may
require additional complexity in cloud management consoles,
it may dramatically reduce the incidence of latent configura-
tion for manually-managed services.

IP Allocation Policy. Cloud providers currently allocate IPs
pseudo-randomly from a pool. New allocation policies can
prevent adversaries from exploiting a large number of IP ad-
dresses, while being transparent to tenants and complementary
to other defenses. We propose IP Tagging, and evaluate it
against the existing random allocation, and a least-recently-
used (LRU, the oldest address is always allocated) allocation.

Under IP Tagging, when an IP address is released, it is
tagged with both the release time and the tenant. When a new
IP is requested, preference is first given to IP addresses that
the tenant previously released, followed by the address that has
been in the pool the longest. Tagging prevents cloud squatting
in multiple ways: (1) Adversaries are prevented from scanning
the entire IP space by allocating many instances, (2) tenants
receive their same IP addresses back, reducing the number
of tenants associated with each IP address and therefore the
likelihood of any individual IP address being exploitable—in
essence allowing the allocations to self-partition by tenant.

We perform a brief experiment simulating policies on a
cloud IP address pool. Simulated tenant agents allocate and
deallocate IPs from the pool randomly up to a quota. An adver-
sarial agent allocates IP addresses with the goal of observing
traffic intended for previous tenants. IPs are allocated for a
fixed duration with a maximum quota of simultaneous IPs
allocated (as observed in AWS). The simulation measures the
efficacy of each allocation policy through (a) the number of
unique addresses allocated to the simulated adversary, (b) how
long ago a previous tenant controlled the assigned addresses,
and (c) how many tenants are associated with each address.

AMAZON ACTIONS

In response to this study and a subsequent internal
audit of AWS deployments, Amazon is performing the
following actions to assist AWS customers:
Cloud Configuration. When cloud services can be
configured to interact with an AWS compute resource,
the management console is being updated to alert users
when they subscribe elastic IP addresses directly to
SNS Topics or health checks.
Expanded scanning/disclosure of vulnerabilities.
Amazon is developing tools that analyze control-plane
information to locate customers with current miscon-
figurations across all tenants and regions. The outputs
of scans will be used to send notices to customers with
misconfigured cloud services to review their configu-
ration for SNS topics and Route53 heath checks.
Automated Policy Enforcement. Amazon is devel-
oping managed Config rules that customers can apply
to their accounts within an organization. These Config
Rules can be configured to prevent, remediate, or alert
on cloud assets that meet the conditions of the rules.
Updated Best Practices. AWS is updating Route53
and SNS best practices documentation to recommend
customers avoid tying services and configurations to
elastic IPs and ensuring good hygiene for server in-
stantiating and decommissioning. For instance, best
practice documentation for SNS will discuss the risks
of failing to remove subscriptions, especially when
raw IP addresses of AWS instances and unencrypted
messages are used.

TABLE VI: Experimental results of IP pool simulation.

Policy Unique IPs Mean Prev. Tenants Median Reuse Time

RANDOM 377 596 228.2 5.7⇥ 103 s
LRU 385 774 209.6 9.2⇥ 103 s

TAGGING 240 2.387 2.9⇥ 106 s

Our simulation matches parameters observed in
us-east-1a, with 673 k unique IPs modeled. 100 k
tenants are modeled, with a new tenant quota selected at
random every 10 minutes. IPs are allocated and deallocated
to reach this target and assigned to tenants at random. The
simulator could also be augmented with actual IP allocation
traces from a public cloud, though such a dataset is not
available. The adversarial agent holds IP addresses for 10
minutes with a quota of 60 addresses (similar to the per-zone
quota from our measurement study). A total of 581 k IPs
were allocated by the adversary under each policy, again
mirroring our actual experiment.

Our results are shown in Table VI. While an LRU policy
increases the median reuse time (62% increase vs random
allocation), IP Tagging has the greatest impact on all three

Latent configuration
Centralized configuration (DNS)

Configuration auditing

Provider scanning for vulnerabilities

Policy Enforcement

Resource-based Naming

Cloud Tenant Cloud Provider



Amazon Actions

Cloud Configuration
New alerts in console for dangerous configuration

Scanning & Disclosure
Analysis of control-plane across all regions

Automated Policy Enforcement
Managed Config rules to enforce best practices

Updated Best Practices
New documentation on IP hygiene and latent configuration

Measuring and Mitigating the Risk of IP Reuse on Public Clouds



Takeaways

Public clouds bring new security concerns
• Latent configuration is widespread and dangerous
• Cloud services may not sufficiently protect tenants

Adversaries can discover and exploit vulnerabilities
• IP addresses are pseudo-random, and allow sampling of pool

Cloud squatting can be prevented
• Reducing IP address reuse
• Preventing latent configurations

Measuring and Mitigating the Risk of IP Reuse on Public Clouds



Thank You!

@EricPauley_

epauley@psu.edu 
pauley.me/cloudsec

Measuring and Mitigating the Risk of IP Reuse on Public Clouds


