

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

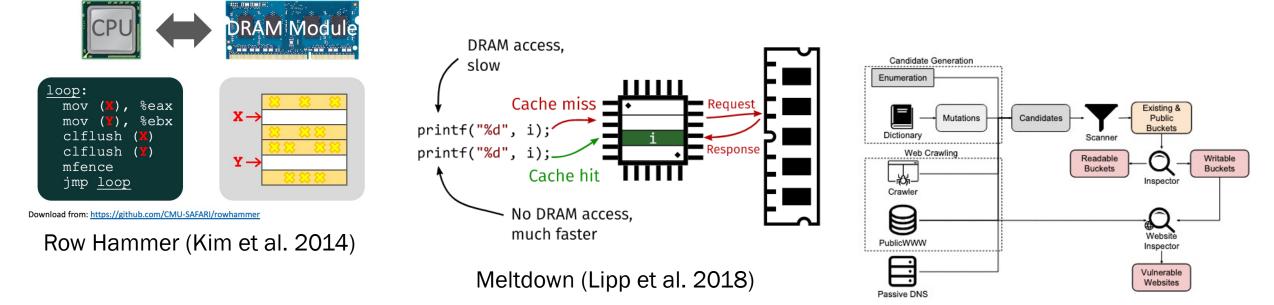
Eric Pauley, Ryan Sheatsley, Blaine Hoak, Quinn Burke, Yohan Beugin, Patrick McDaniel

> Pennsylvania State University Contact: epauley@psu.edu

Public Clouds: Disruption at Scale

Amazon Web Services posts record \$13.5B in *profits* for 2020 in Andy Jassy's AWS swan song

BY TODD BISHOP on February 2, 2021 at 4:29 pm

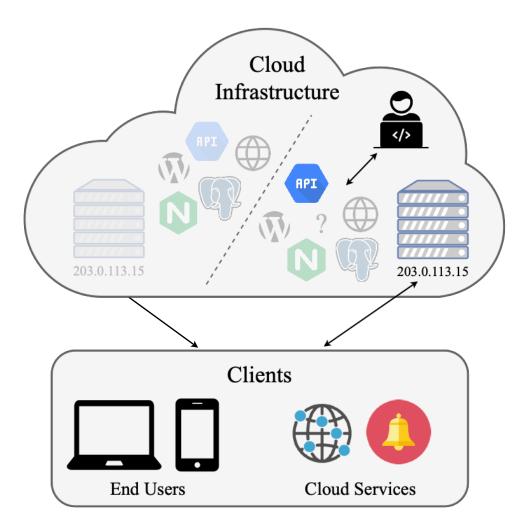

Amazon Web Services, 6-year financials

Public clouds leverage resource sharing and reuse to improve performance.

Vulnerabilities due to Resource Sharing

A Simple Program Can Induce Many Errors

Storage Policies (Continella et al. 2018)

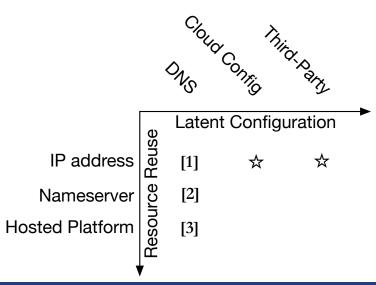

00

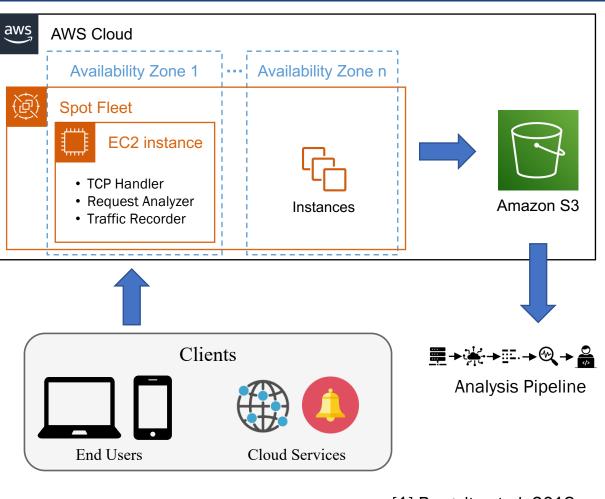
PennState

How does the resource lifecycle of public clouds affect security?

Issue: Resource Reuse

- 1. Tenants create configuration that refers to cloud resources (e.g., IP addresses):
 - Causes clients to use resources
 - Establishes a trust relationship
- 2. Cloud resources reused by other tenants
 - Configuration is now *latent*
- 3. Previous tenant's clients send data
 - Adversary listens (cloud squatting)





Experiment (March 8 – May 15, 2021)

- 3M servers allocated on AWS us-east1
- ~500M network sessions
- $\sim \frac{1}{2}$ TB of raw network traffic data
- 1.5M unique IP addresses
 - 56% of total available in pool

[1] Borgolte et al. 2018 [2] Alowaisheq et al. 2020 [3] Liu et al. 2016

Cloud Squatting: Vulnerability at Scale

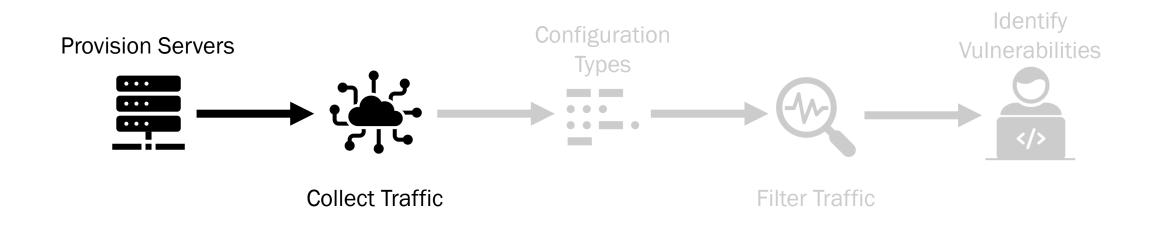
Cloud Services

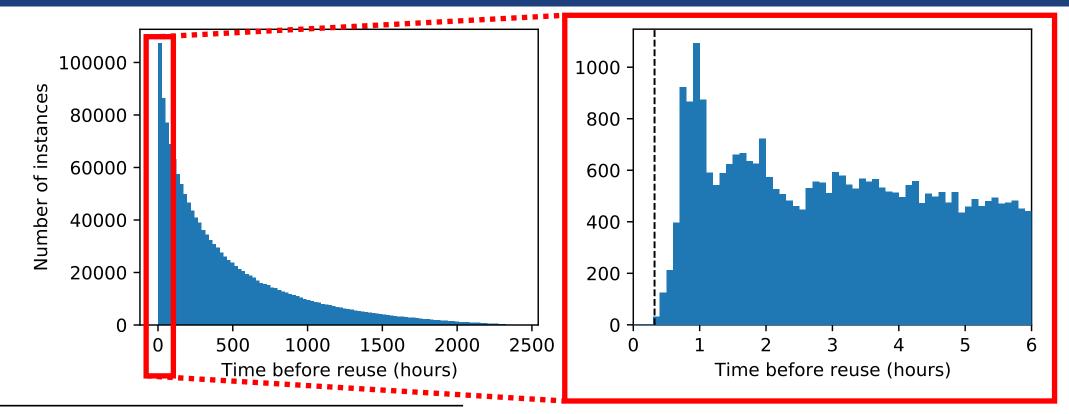
- >5M messages
- 4 cloud services

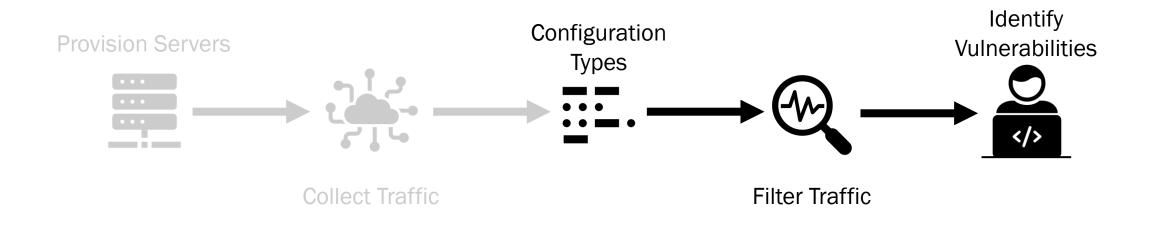
Third-Party Services

- >3M messages
- Numerous Services

<u>DNS</u>


- 5400 Websites
- 23 top-1000


Measuring IP Reuse: Bottom-Up

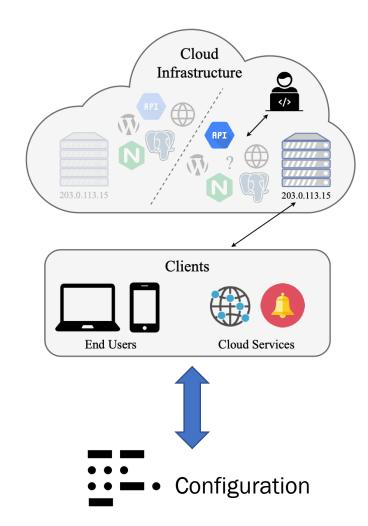

Zone	Servers	Unique IPs	Estimated IPs	Capture Rate
us-east-1a	$581\mathrm{k}$	$383\mathrm{k}$	$789\mathrm{k}$	49%
us-east-1b	$607\mathrm{k}$	$389\mathrm{k}$	$762\mathrm{k}$	51%
us-east-1c	$630\mathrm{k}$	$236\mathrm{k}$	$313\mathrm{k}$	76%
us-east-1d	$573\mathrm{k}$	$360\mathrm{k}$	$700\mathrm{k}$	51%
us-east-1f	$647\mathrm{k}$	$171\mathrm{k}$	$198\mathrm{k}$	87%
Total	$3039\mathrm{k}$	$1540\mathrm{k}$	$2762\mathrm{k}$	56%

Pseudorandom IP allocation allows adversaries to easily explore the IP space with high coverage.

Measuring and Mitigating the Risk of IP Reuse on Public Clouds

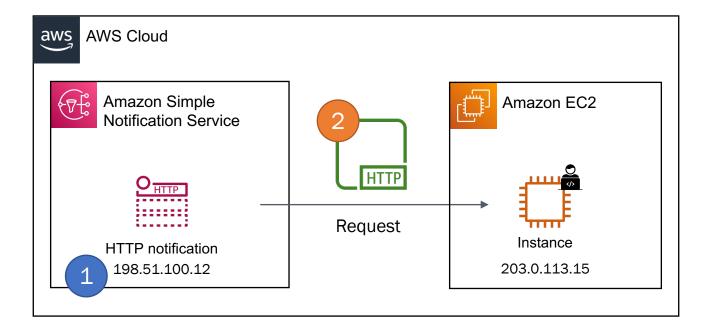
Measuring IP Reuse: Bottom-Up

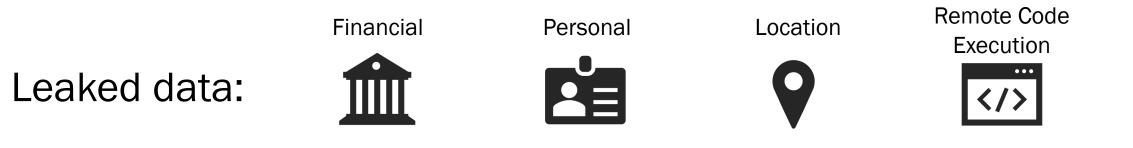
E. Types of Latent Configuration


Cloud Services

- Managed by cloud provider
- Configured to connect to IP addresses
- E.g., SNS, Route53

Third-Party Services

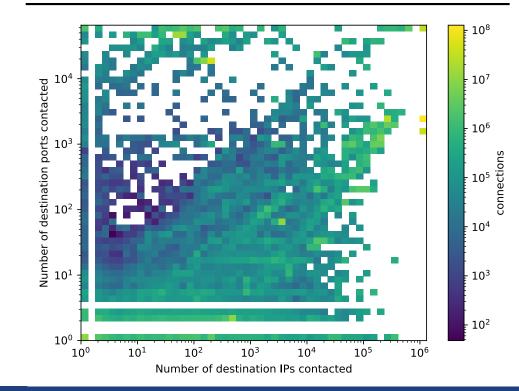

- Client software referencing reused IPs
- E.g., Databases, APIs



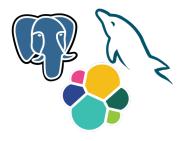
AWS-verified IP Address Cloud service identified in HTTP headers

Cloud Services are Vulnerable

Service	SNS SNS	Boute53	Cloudfront	API Gateway
IPs	$24.9\mathrm{k}$	$2.8\mathrm{k}$	65	3
Sessions	$1.6\mathrm{M}$	$3.6\mathrm{M}$	$1.7\mathrm{k}$	10
Sessions w/ DNS	25	$567\mathrm{k}$	767	2
Unique Tenants	78	$3.1\mathrm{k}$	64	3



Measuring and Mitigating the Risk of IP Reuse on Public Clouds


- Main idea: filter out likely bot/scanner traffic to analyze remaining share
- Method: series of filters at various levels of protocol stack:
 - 1. Network filtering (Blocklists)
 - 2. Transport filtering (IP/Port scanning)
 - 3. Session filtering
 - 4. Application Filtering

Step	IPs	TCP Sessions	Size
Initial	$3.13\mathrm{M}$	$596\mathrm{M}$	$410\mathrm{GB}$
Network	$3.03\mathrm{M}$	$280\mathrm{M}$	$148\mathrm{GB}$
Transport	$1.70\mathrm{M}$	$10.2\mathrm{M}$	$11\mathrm{GB}$
Session	$1.14\mathrm{M}$	$4.89\mathrm{M}$	$9.3\mathrm{GB}$
Application	$340\mathrm{k}$	$2.95\mathrm{M}$	$6.3\mathrm{GB}$

Databases

Caches

Financial Traffic

ଘ		2
		{
ĺ	>	Т
	9	_

Logging

Webhooks

Custom APIs

Vulnerable Domain Names

Site rank	Domain		
31	amazonaws.com		
68	akadns.net		
76	cnn.com		
129	wix.com		
146	harvard.edu 🥚		
164	go.com		
177	usatoday.com 🔵		
284	intuit.com		
298	cornell.edu 🔴		
300	intel.com		
302	slack.com		
434	vice.com		
450	redhat.com		
470	trafficmanager.net		
495	upenn.edu 🔴		
497	elsevier.com		
535	ieee.org		
578	Jhu.edu		
588	nvidia.com		
618	lenovo.com		
767	ea.com		
782	hhs.gov		
957	justice.gov 🔴		

From banner info: Over 5,400 domains found vulnerable

- 23 in top-1000
- Many domains had several vulnerable subdomains

Wide variety of associated organizations:

Industry

Government

Disclosures and Root Causes

Direct tenant disclosures and surveys reveal root causes

Integration: lift-and-shift

- Transfers assumptions from private data center
- No consideration for service decommissioning

- No centralized view of cloud configuration
- Failure to follow best practices

Insufficient/broken automation

- No automated DevOps (e.g., CloudFormation)
- Bespoke deployments without decommissioning

Defenses and Mitigations

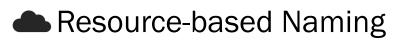
Resource (IP) reuse

- Reserved IP ranges
- Private networking

lPv6

IP allocation policy (e.g., IP Tagging)

Policy	Unique IPs	Mean Prev. Tenants	Median Reuse Time
Random LRU Tagging	$377596\ 385774\ 240$	$228.2 \\ 209.6 \\ 2.387$	$5.7 \times 10^{3} \mathrm{s}$ $9.2 \times 10^{3} \mathrm{s}$ $2.9 \times 10^{6} \mathrm{s}$


Latent configuration

Centralized configuration (DNS)

Configuration auditing

Provider scanning for vulnerabilities

Policy Enforcement



Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Amazon Actions

Cloud Configuration
New alerts in console for dangerous configuration

Scanning & Disclosure Analysis of control-plane across all regions

Automated Policy Enforcement Managed Config rules to enforce best practices

Updated Best Practices

New documentation on IP hygiene and latent configuration

Takeaways

- Public clouds bring new security concerns
 - Latent configuration is widespread and dangerous
 - Cloud services may not sufficiently protect tenants

- Adversaries can discover and exploit vulnerabilities
 - IP addresses are pseudo-random, and allow sampling of pool

- Cloud squatting can be prevented
 - Reducing IP address reuse
 - Preventing latent configurations

Thank You!

🖂 epauley@psu.edu

pauley.me/cloudsec

