
Performant Binary Fuzzing without 
Source Code using Static Instrumentation

Eric Pauley*, Danfeng Zhang‡, Gang Tan‡, Patrick McDaniel*

* University of Wisconsin–Madison (Work performed while at Penn State)
‡ Pennsylvania State University

IEEE CNS 2022



Approaches to Bug Finding

• Manual effort required
• Full coverage is difficult (E.g., corner cases, memory safety)

Unit/Func@onal Tests

• Not possible for most projects

Formal Verification

• E.g., Fuzzing

Automated Testcase Genera@on
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Greybox Fuzzers
Advantages:
• Fully automatic
• Don’t rely on predictable 

input grammar

Disadvantages:
• Sensitive to initial inputs
• Highly probabilistic
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How greybox fuzzers work

Mutate 
Exis+ng 
Inputs

Run 
Program

Report 
Crashes

Record 
Input 

Behavior

Prune 
Input 
Set

Mutation Strategies:
• Randomized mutation
• Magic Bytes
• Symbolic Execution
• Gradient Descent

Recording behavior:
• Control flow coverage
• Data flow
• Comparisons



Fuzzing Instrumentation

int main(…) {
unsigned int val = 0;
fread(&val, 4, 1, stdin);

if (val == 0x12345678)
val = *(volaJle int*)NULL;

return val;
} 

Source Code define i32 @main(i32, i8**) #0 {
%9 = call i64 @fread(…)
%11 = icmp eq i32 %10, 305419896
br i1 %11, label %12, label %14

; <label>:12:
%13 = load null, align 4
store i32 %13, i32* %6, align 4
br label %14

; <label>:14:
%15 = load i32, i32* %6, align 4
ret i32 %15

}

Intermediate RepresentaJon

Compiler Frontend
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Is source code necessary?

int main(…) {
unsigned int val = 0;
fread(&val, 4, 1, stdin);

if (val == 0x12345678)
val = *(volaJle int*)NULL;

return val;
} 

Source Code

Compilation

Lost:
• Typing InformaJon
• Control Flow
• InstrucJon Alignment
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Is source code necessary?

int main(…) {
unsigned int val = 0;
fread(&val, 4, 1, stdin);

if (val == 0x12345678)
val = *(volaJle int*)NULL;

return val;
} 

Source Code

CompilaJon

Lost:
• Typing Information
• Control Flow
• Instruction Alignment
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Can we use binary instrumenta-on to achieve the 
same fuzzing techniques without source code?



What is RWFuzz?
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• Instruments 
binaries for fuzzing

• Compa3ble with an 
exis3ng fuzzer [1]

[1] Angora, Chen et al. S&P 2018



Binary Fuzzing Challenges

• Basic Blocks/Instruc1on Alignment unavailable

Coverage Measurement

• Can't modify stack layout

Context Sensitivity

• Comparisons span mul1ple instruc1ons

Inferring Comparisons
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Instruction alignment
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• Challenge: x86 instructions unaligned
• Cannot determine alignment statically

• Solution: instrument everything
• Leverage superset disassembly[1]

• Downside: still don’t know control flow

which is more likely to be solved by random mutation. Angora
employs gradient descent, an optimization technique, to solve
conditionals directly. Concrete values used in comparisons are
recorded, along with the offsets in the input that contribute to
the conditional. This requires precise instrumentation of each
conditional, as well as taint tracking to determine which input
bytes of the input affect execution.

B. Binary Fuzzing Instrumentation

When only binary code is available, instrumenting for grey-
box fuzzing becomes more difficult because source-level infor-
mation is removed by the compilation process. This is further
complicated when binaries are stripped or debug symbols are
removed. Binary fuzzers seek to approximate the techniques of
source-available fuzzers without source code. In general, one
can perform either dynamic or static instrumentation to support
binary-level fuzzing:

1) Instrument dynamically. Extant binary fuzzers [6], [22],
[25], [2], [1], [19] use a binary instrumentation framework
such as Pin [20], QEMU [10], or DynInst [1]. Dynamic
instrumentation tools have inherent performance overhead,
as they must interpret the executable and determine instru-
mentation points at runtime. This overhead can be reduced,
though not eliminated, using just-in-time compilation.

2) Add instrumentation statically. A program can be statically
rewritten to include fuzzing instrumentation within the ex-
ecutable. This requires static analysis to extract instruction
and control-flow information. While static instrumentation
avoids the runtime overhead of dynamic instrumentation,
it is difficult because control flow and typing information
is lost during compilation, and cannot be inferred in gen-
eral without running the program. RWFUZZ demonstrates
techniques for static binary fuzzing instrumentation.
Dinesh et al. [12] explore applications of static instrumen-
tation for fuzzing. They focus on ensuring soundness and
performance during the rewriting process. In contrast, our
work explores challenges relating specifically to applying
source-available fuzzing techniques to binaries.

Some binary fuzzers focus on reproducing source-level
techniques using approximation. AFL-DynInst [1] instruments
dynamically for AFL [31], and Steelix [19] implements com-
parable techniques to LAF-Intel [3] dynamically. Such works
generally aim to find the same crashes per execution as
their source-available counterparts, while minimizing execution
time overhead. When techniques do not benefit from source
instrumentation, fuzzers demonstrate techniques on binaries.
REDQUEEN [6] and VUzzer [22] are directly implemented
using dynamic instrumentation.

C. Static Binary Instrumentation

Our work in binary fuzzing builds on developments in static
binary instrumentation, which incurs several key challenges.

Binaries contain code and data. One of the greatest chal-
lenges to static instrumentation is determining the meaning
of these bytes without running the program, especially when

1 int foo(int a)

2 return a + 1;

0 55 push rbp
1 48 89 e5 mov rbp, rsp
4 89 7d fc mov [rbp-0x4], edi
7 8b 45 fc mov eax, [rbp-0x4]
A 83 c0 01 add eax, 0x1

D 5d pop rbp
E c3 ret

(a) A simple C function foo compiled with GCC (-O0)

push mov … mov … mov … add … pop ret

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE

55 48 49 E5 89 7D FC 8B 45 FC 83 C0 01 5D C3

Address

Aliased 
Instructions

Actual 
Instructions

Bytes

(b) Assembled binary. Actual instructions map to source assembly.
Aliased instructions are valid instructions at other offsets.

Fig. 1: x86 machine code is unaligned: original instructions
are aliased by additional valid instructions. Determining used
instructions statically is undecidable [30].

binaries are stripped of debug info. A rewriter must obtain a cor-
rect disassembly of the executable and modify the instructions
without breaking original functionality. Different frameworks
approach this problem with varying success [28], [29], [27].

Determining valid executable offsets in a program is essential
to extracting actual executed code. While this is straightforward
for a CPU architecture that uses word-aligned instructions, it
is more difficult for a variable-width instruction set such as
x86 [7]. Figure 1 shows an example function and its resulting
binary, along with instructions that exist in the binary but not
in the original program.

Most compilers align instructions based on function bound-
aries, and UROBOROS uses this to extract valid instruc-
tions [28], [29]. The authors note that their tool can become
more effective as function identification improves. However,
even advanced function boundary extraction methods fail to
identify boundaries precisely under adversarial conditions such
as disguised function alignment [23], [8]. Binary fuzzers are
an adversarial tool, and must be resistant to these techniques.
Using a rewriting tool that depends on function boundaries is
not viable.

Recent binary analysis tooling has placed emphasis on
determining instruction offsets without relying on function
identification [26]. Although, as Wartell et al. note [30], sound
static disassembly is undecidable in general, these techniques
can disassemble most programs. As a result rewriters such as
RAMBLR [27] have been developed that rely on these new
techniques. RAMBLR makes fewer assumptions about instruc-
tion offsets, so works correctly on more programs, though it is
not entirely resistant to obfuscation and relies on heuristics to
determine instruction locations.

[1] Bauman et al. NDSS 2018



Coverage Measurement
• Challenge: control flow 

unavailable

• Solution: heuristic control 
flow instrumentation

• Over-instrumenting is better 
than under-instrumenting
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Context-sensitive coverage

• Crashes may only be 
discoverable in certain 
contexts

• Need to track call context to 
maximize coverage
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void foo(uint16_t a, uint16_t b) {
if (a - b < 0x100)

if (a < 0x6010)
// Crash

}

int main(int argc, char** argv) {
uint16_t a = read_uint16();

foo(a, 0x7000);
foo(a, 0x6000);

}

Input a – b [1] a –b [2] Coverage Cov (With Ctx)

0x7050 0x50 0x1050 ◼+◼ ◼+◼
0x6050 0xF050 0x50 ◼+◼ ◼+◼
0x6005 0xF005 0x5 ◼+◼+◼+✗ ◼+◼+◼+✗
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Inferring Comparisons
• Challenge: x86-64 comparisons 

are performed in multiple 
instructions

• Solution: mirror processor state 
in fuzzing runtime

RWFuzz - IEEE CNS 2022

Compare

• Reads inputs
• Outputs all 

results
• Populates FLAGS

Condi@onal

• Reads FLAGS
• Determines 

comparison used
• Changes control 

flow



Instrumenting programs with RWFuzz
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Evaluation



Evaluation Overview

• Evaluation on manually-generated bugs

Func3onal Test

• Comparison against source-code fuzzers
• Synthe3c bug corpus [1]

Performance Evalua3on

RWFuzz - IEEE CNS 2022 [1] Dolan-Gavio et al. (S&P 2016)



Manually-created bugs
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Results on manually-created bugs
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Figure: Time taken by each fuzzer to find manually-generated bugs

TABLE II: Time taken to find a crash in each example program.
Pairs without a time did not complete successfully within 60 s.

Program Time to find crash with each fuzzer (s)
RWFUZZ Angora LAF-Intel QAFL

simple 2.7 5.6 0.2 0.3
magic 1.8 0.9 38.91 –
context 4.0 3.6 – –
undef 1.9 – – –

1 LAF-INTEL inconsistently finds a crash within 60 s.

mutations are sufficient to trigger it.
2) magic: contains a comparison against a 32-bit magic

value. This is similar to the bugs inserted in the LAVA-
M corpus. AFL cannot successfully find this bug in
reasonable time, while the other tools successfully find
the bug.

3) context: similar to magic, but only crashes within the
first call to foo; since a and b are unsigned integers,
a � b is an unsigned subtraction and its result is always
nonnegative. LAF-INTEL cannot consistently trigger this
bug. RWFUZZ and Angora both support context-sensitive
branch counts, so both can find this bug.

4) undef: a null-pointer dereference discernible at compile-
time. While both GCC and Clang do not optimize this out
by default, the addition of the instrumentation code used
by Angora causes further optimization passes to remove
the bug. Angora cannot find it even though it occurs
in the uninstrumented program. RWFUZZ instruments at
the binary level and so reproduces the uninstrumented
functionality.

Each program was fuzzed by each tested fuzzer for one
minute. Comparing the time taken by each program to find
these bugs (Table II) demonstrates the effectiveness of fuzzing
using binary rewriting. RWFUZZ found all bugs that Angora
found in comparable time. LAF-INTEL and AFL, which use
simpler heuristics to measure and discover new test cases,
did not successfully find bugs in the harder sample programs.
This shows that RWFUZZ is finding similar classes of bugs to
Angora.

In some cases, RWFUZZ can find bugs in programs that are
not found by Angora. In the undef program, the bug may be
optimized out by some compilers, including the instrumentation
pass used by Angora. Bugs due to undefined behavior can be
hidden during testing only to appear in production releases,
making this bug especially insidious. Instrumentation during
compilation inherently modifies the program under test; so any
bugs that are compilation-dependent may not be reproducible
using a source-level fuzzer. In contrast, binary fuzzing can
be performed on software in its release configuration, and
explicitly does not modify the behavior of the base program.
This is a key advantage of binary rewriting for fuzzing.

B. Performance on Fuzzing Corpora

We continue by comparing the performance of RWFUZZ
with other fuzzers on a standard bug corpus. For this we use the

TABLE III: Median number of bugs found by each fuzzer on
each LAVA-M executable in one hour.

Program Number of bugs found
RWFUZZ Angora LAF-Intel QAFL RetroWrite1

base64 45 43 42 0 2
md5sum 59 56 6 0 0
uniq 29 29 16 0 2
who 258 258 2 0 0

1 Median bugs found over 5 trials of 24 hours [12].

TABLE IV: Median time overhead of RWFUZZ vs. Angora.

Program Minutes to find bugs OverheadRWFUZZ Angora
base64 11 6 1.8⇥
md5sum 34 11 3.1⇥
uniq 5 1 5.0⇥
who 42 9 4.7⇥

Overall 92 27 3.4⇥

LAVA-M corpus [13]. Angora’s optimization towards LAVA-M
makes it an ideal corpus for evaluating RWFUZZ. The LAVA-
M corpus is a set of utilities from GNU Coreutils (base64,
uniq, md5sum, and who) with artificially-generated bugs. To
generate buggy code, a data-flow analysis is performed on ap-
plication source code. The bugs are introduced as magic values
based on dataflow analysis, and are non-trivial to reproduce,
since the magic values are not directly present in crashing
inputs.

We evaluated four fuzzers (RWFUZZ, Angora, LAF-INTEL,
and AFL) on the LAVA-M programs. We additionally compare
against the published results of RetroWrite [12], though the
two tools have differing goals. For each fuzzer-program pair,
the program was fuzzed over 20 trials for one hour each. Each
trial was run in a single thread on an Intel Xeon 6136 with
384GB of RAM. Seed inputs for each program were identical
across all fuzzers2.

Table III shows the median number of bugs found by each
fuzzer in one hour. RWFUZZ finds many more bugs than LAF-
INTEL and AFL, and roughly as many bugs as Angora3 on all
four LAVA-M programs. This demonstrates that RWFUZZ’s
instrumentation is comparable to equivalent source-available
instrumentation. Additionally, because RetroWrite implements
AFL-style instrumentation, RWFUZZ’s instrumentation outper-
forms it in terms of actual bugs found.

We also analyze the runtime performance of RWFUZZ.
Figure 6a shows the median number of bugs found over time
by the four fuzzers tested, and Table IV shows time taken
by RWFUZZ to find as many bugs as Angora. Programs
instrumented with RWFUZZ show similar behavior to Angora,
with new inputs found roughly linearly until the program is
covered fully. RWFUZZ has a 3.4⇥ runtime overhead compared

2All seeds were derived from Angora’s published evaluation procedures.
3Angora was tested using Pintool-based taint tracking, not compile-time taint

tracking. This was done to match the tracking used by RWFUZZ so differing
performance is solely due to static instrumentation.

Keystone [4] as the fuzzed program is being rewritten.
Before rewriting occurs, symbols are extracted from the in-
strumentation runtime, allowing these snippets to be linked
against the larger instrumentation library. The rewritten
instrumentation can thus access complex functionality,
even though it contains only a few contiguous instructions.

The compiled runtime and the rewritten program are output
as one executable binary. This allows existing fuzzing tools to
use the instrumented program with minimal modification.

B. Instrumentation Performance

Fuzzing a program involves passing many inputs into it to
explore new behavior and potential bugs. The effectiveness
of a fuzzer is, therefore, largely related to two factors: How
much information can be obtained about a program from
each execution, and how rapidly program executions can be
performed (throughput). Source-level instrumentation can be
inserted using a compiler’s Intermediate Representation (IR) to
achieve high throughput on binaries. Furthermore, statically in-
serted fuzzing instrumentation at the IR level is inserted before
optimization is performed; therefore, the following optimiza-
tions can optimize the instrumentation for a specific program.
On binaries, however, RWFUZZ must modify compiled binaries
directly and optimizations cannot be easily performed.

One key advantage to instrumenting using an IR is the ability
to efficiently use registers. Fuzzing tools that leverage LLVM
bitcode can add abstract instructions that are then mapped to
unused processor registers. In contrast, RWFUZZ can make no
assumptions about a program’s register use. Since instrumen-
tation code necessarily modifies registers, each instrumentation
hook must save the processor state before executing and restore
it afterwards. This presents a substantial performance overhead.
RWFUZZ reduces the impact of this by using a minimal set of
unique registers for its instrumentation.

Fuzzing using gradient descent requires determining what
portions of the input influence each comparison. This is done
using taint tracking, which measures information flow dynam-
ically. Taint tracking instrumentation can either be inserted
during compilation, or at runtime using a dynamic instrumen-
tation tool such as Pin [20]. In the case of binary rewriting
for fuzzing, instrumentation during compilation is not available.
For simplicity, RWFUZZ uses existing dynamic instrumentation
in Angora’s fuzzing loop, which is based on libdft [17].

V. EVALUATION

Our evaluation aims to demonstrate RWFUZZ’s ability to
instrument binaries for fuzzing with comparable effectiveness
to source-level fuzzers. We focus on the following questions:
(1) can RWFUZZ find the same classes of bugs targeted by
source-level fuzzers? (2) what are the performance trade-offs
of binary instrumentation on code coverage and bugs found?

A. Fuzzing Instrumentation

We first evaluate RWFUZZ on four sample programs (Shown
in Figure 5) to confirm function and demonstrate the types of
conditionals that can be solved to find bugs. These four inputs

1 int main(int argc, char **argv) {

2 char buf[10];

3 gets(buf);

4 return buf[0] != NULL;

5 }

(a) simple - A buffer overrun can be caused by calling gets

1 int main(int argc, char **argv) {

2 unsigned int val = 0;

3 fread(&val, 4, 1, stdin);

4

5 if (val == 0x12345678)

6 val = *(volatile int *)NULL;

7 return val;

8 }

(b) magic - A specific input causes a null-pointer exception

1 __attribute__((noinline)) volatile
2 int foo(unsigned int a, unsigned int b) {

3 if (a - b < 0x1000)

4 if (a < 0x60000100)

5 *(volatile int *)NULL;

6 return 1;

7 }

8

9 int main(int argc, char **argv) {

10 unsigned int a = 0;

11 unsigned int ret = 0;

12 fread(&a, 4, 1, stdin);

13

14 ret += foo(a, 0x59239472);

15 ret += foo(a, 0x70000000);

16 ret += foo(a, 0x80000000);

17 ret += foo(a, 0x90000000);

18 ret += foo(a, 0xa0000000);

19 return ret;

20 }

(c) context - The bug is only triggered in the first call to foo. Note
that integers are unsigned.

1 __attribute__((noinline))

2 int foo(unsigned int a, unsigned int b) {

3 if (a - b < 0x1 && a < 0x60000100)

4 return *(int *)(a - b);

5 return 1;

6 }

7

8 // Same as in ‘context‘
9 int main(int argc, char **argv) {...}

(d) undef - The bug may be optimized out by some compilers

Fig. 5: C programs with progressively more complex bugs

represent successively more complex programs for bug finding.
We compare RWFUZZ’s performance against AFL [31], LAF-
INTEL [3], and Angora [11] on four programs:

1) simple: a trivial buffer-overrun bug. This was found
quickly by each tested tool. Finding this bug does not
require constraint solving as implemented by Angora
(instrumented from source or using RWFUZZ), as random



Evaluation on Synthetic Bugs

TABLE II: Time taken to find a crash in each example program.
Pairs without a time did not complete successfully within 60 s.

Program Time to find crash with each fuzzer (s)
RWFUZZ Angora LAF-Intel QAFL

simple 2.7 5.6 0.2 0.3
magic 1.8 0.9 38.91 –
context 4.0 3.6 – –
undef 1.9 – – –

1 LAF-INTEL inconsistently finds a crash within 60 s.

mutations are sufficient to trigger it.
2) magic: contains a comparison against a 32-bit magic

value. This is similar to the bugs inserted in the LAVA-
M corpus. AFL cannot successfully find this bug in
reasonable time, while the other tools successfully find
the bug.

3) context: similar to magic, but only crashes within the
first call to foo; since a and b are unsigned integers,
a � b is an unsigned subtraction and its result is always
nonnegative. LAF-INTEL cannot consistently trigger this
bug. RWFUZZ and Angora both support context-sensitive
branch counts, so both can find this bug.

4) undef: a null-pointer dereference discernible at compile-
time. While both GCC and Clang do not optimize this out
by default, the addition of the instrumentation code used
by Angora causes further optimization passes to remove
the bug. Angora cannot find it even though it occurs
in the uninstrumented program. RWFUZZ instruments at
the binary level and so reproduces the uninstrumented
functionality.

Each program was fuzzed by each tested fuzzer for one
minute. Comparing the time taken by each program to find
these bugs (Table II) demonstrates the effectiveness of fuzzing
using binary rewriting. RWFUZZ found all bugs that Angora
found in comparable time. LAF-INTEL and AFL, which use
simpler heuristics to measure and discover new test cases,
did not successfully find bugs in the harder sample programs.
This shows that RWFUZZ is finding similar classes of bugs to
Angora.

In some cases, RWFUZZ can find bugs in programs that are
not found by Angora. In the undef program, the bug may be
optimized out by some compilers, including the instrumentation
pass used by Angora. Bugs due to undefined behavior can be
hidden during testing only to appear in production releases,
making this bug especially insidious. Instrumentation during
compilation inherently modifies the program under test; so any
bugs that are compilation-dependent may not be reproducible
using a source-level fuzzer. In contrast, binary fuzzing can
be performed on software in its release configuration, and
explicitly does not modify the behavior of the base program.
This is a key advantage of binary rewriting for fuzzing.

B. Performance on Fuzzing Corpora

We continue by comparing the performance of RWFUZZ
with other fuzzers on a standard bug corpus. For this we use the

TABLE III: Median number of bugs found by each fuzzer on
each LAVA-M executable in one hour.

Program Number of bugs found
RWFUZZ Angora LAF-Intel QAFL RetroWrite1

base64 45 43 42 0 2
md5sum 59 56 6 0 0
uniq 29 29 16 0 2
who 258 258 2 0 0

1 Median bugs found over 5 trials of 24 hours [12].

TABLE IV: Median time overhead of RWFUZZ vs. Angora.

Program Minutes to find bugs OverheadRWFUZZ Angora
base64 11 6 1.8⇥
md5sum 34 11 3.1⇥
uniq 5 1 5.0⇥
who 42 9 4.7⇥

Overall 92 27 3.4⇥

LAVA-M corpus [13]. Angora’s optimization towards LAVA-M
makes it an ideal corpus for evaluating RWFUZZ. The LAVA-
M corpus is a set of utilities from GNU Coreutils (base64,
uniq, md5sum, and who) with artificially-generated bugs. To
generate buggy code, a data-flow analysis is performed on ap-
plication source code. The bugs are introduced as magic values
based on dataflow analysis, and are non-trivial to reproduce,
since the magic values are not directly present in crashing
inputs.

We evaluated four fuzzers (RWFUZZ, Angora, LAF-INTEL,
and AFL) on the LAVA-M programs. We additionally compare
against the published results of RetroWrite [12], though the
two tools have differing goals. For each fuzzer-program pair,
the program was fuzzed over 20 trials for one hour each. Each
trial was run in a single thread on an Intel Xeon 6136 with
384GB of RAM. Seed inputs for each program were identical
across all fuzzers2.

Table III shows the median number of bugs found by each
fuzzer in one hour. RWFUZZ finds many more bugs than LAF-
INTEL and AFL, and roughly as many bugs as Angora3 on all
four LAVA-M programs. This demonstrates that RWFUZZ’s
instrumentation is comparable to equivalent source-available
instrumentation. Additionally, because RetroWrite implements
AFL-style instrumentation, RWFUZZ’s instrumentation outper-
forms it in terms of actual bugs found.

We also analyze the runtime performance of RWFUZZ.
Figure 6a shows the median number of bugs found over time
by the four fuzzers tested, and Table IV shows time taken
by RWFUZZ to find as many bugs as Angora. Programs
instrumented with RWFUZZ show similar behavior to Angora,
with new inputs found roughly linearly until the program is
covered fully. RWFUZZ has a 3.4⇥ runtime overhead compared

2All seeds were derived from Angora’s published evaluation procedures.
3Angora was tested using Pintool-based taint tracking, not compile-time taint

tracking. This was done to match the tracking used by RWFUZZ so differing
performance is solely due to static instrumentation.

RWFuzz - IEEE CNS 2022

Table: Bugs found on LAVA-M in 1 hour

[12] Dinesh et al. (S&P 2022)



Performance overhead of RWFuzz
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(b) Bugs found vs. program executions (RWFUZZ and Angora).

Fig. 6: Bugs found in the LAVA-M corpus by four fuzzers.
Shaded areas represent 60% intervals across 20 trials, with lines
being the median number of bugs found.

to Angora across the corpus. For comparison, Steelix [19],
a binary adaptation of LAF-INTEL [3], has a 7⇥ overhead
compared it its compile-time counterpart. Because fuzz testing
is often performed in parallel across many servers, this is an
acceptable trade-off for the capability of finding bugs without
access to source code.

We additionally compare the bugs found by each fuzzer

normalized by invocations of the program under test. This
comparison (Figure 6b) shows that RWFUZZ’s overhead is
primarily due to individual program runs taking longer. The
overhead can be partially attributed to static binary rewriting
inefficiencies (Section IV-B).

We also compared the specific bugs found by RWFUZZ and
Angora across all trials. One bug was found by Angora and
not by RWFUZZ, while RWFUZZ found 5 bugs not found by
Angora. The substantial overlap in found bugs demonstrates
that RWFUZZ instruments executables for fuzzing correctly
using techniques previously limited to source code.

VI. CONCLUSIONS

Our work demonstrates that fuzzing techniques need not be
limited by access to source code. Our evaluation shows that
RWFUZZ achieves source-level fuzzing accuracy with minimal
performance overhead. Further, the techniques implemented
by our work are generalizable to future works in fuzzing.
The software assurance community can use RWFUZZ to audit
closed-source software similarly to open projects. Yet, binary
fuzzing also has negative implications for software security, as
withholding source code no longer protects against automated
exploitation. As such, advances in binary fuzzing motivate
future work in fuzzing-oriented obfuscation.
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Fig. 6: Bugs found in the LAVA-M corpus by four fuzzers.
Shaded areas represent 60% intervals across 20 trials, with lines
being the median number of bugs found.

to Angora across the corpus. For comparison, Steelix [19],
a binary adaptation of LAF-INTEL [3], has a 7⇥ overhead
compared it its compile-time counterpart. Because fuzz testing
is often performed in parallel across many servers, this is an
acceptable trade-off for the capability of finding bugs without
access to source code.

We additionally compare the bugs found by each fuzzer

normalized by invocations of the program under test. This
comparison (Figure 6b) shows that RWFUZZ’s overhead is
primarily due to individual program runs taking longer. The
overhead can be partially attributed to static binary rewriting
inefficiencies (Section IV-B).

We also compared the specific bugs found by RWFUZZ and
Angora across all trials. One bug was found by Angora and
not by RWFUZZ, while RWFUZZ found 5 bugs not found by
Angora. The substantial overlap in found bugs demonstrates
that RWFUZZ instruments executables for fuzzing correctly
using techniques previously limited to source code.

VI. CONCLUSIONS

Our work demonstrates that fuzzing techniques need not be
limited by access to source code. Our evaluation shows that
RWFUZZ achieves source-level fuzzing accuracy with minimal
performance overhead. Further, the techniques implemented
by our work are generalizable to future works in fuzzing.
The software assurance community can use RWFUZZ to audit
closed-source software similarly to open projects. Yet, binary
fuzzing also has negative implications for software security, as
withholding source code no longer protects against automated
exploitation. As such, advances in binary fuzzing motivate
future work in fuzzing-oriented obfuscation.
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